Functional Biochemistry and Proteomics | CCMAR

Functional Biochemistry and Proteomics

Short Title 
FBP
Description 

The overall research strategy of FBP is driven primarily by the need to translate strong basic science into clinically relevant advances and promoting transfer of technology, based on the integration of high quality multi-disciplinary academic, researcher and clinical activity with a strong focus on translational research.

Coordinator 

Organiza

Main

The overall research strategy of FBP is driven primarily by the need to translate strong basic science into clinically relevant advances and promoting transfer of technology. FBP strategy is based on the integration of high quality multi-disciplinary academic, researcher and clinical activity with a strong focus on translational research.

FBP research team has long expertise in the biochemical aspects of vitamin K-dependent proteins (VKD) and aparticularly unique knowledge about the biochemistry, molecular biology and biomedical aspects of a new VKD member, Gla rich protein (GRP) for which methods and assays are proprietary IP (PCT/PT2009/000046).

Our research interests include the study of GRP and otherkey genes involved in processes of ectopic calcificationand inflammation related diseases such as atherosclerosis, cancer, osteoarthritis, renal disease and diabetes. Through a combination of in vivo studies using human biological samples and in vitro and ex vivo model systems, our research aims to establish new molecular knowledge on the pathophysiology and molecular mechanisms behind the onset and development of these highly prevalentdiseases. The output obtained will most certainly contribute to the prognostic, diagnostic and clinic therapeutics for pathological calcification and inflammation related diseases.

The research activities of FBP also include the exploitation of marine resources and the discovery and validation of natural products derived from marine organisms as novel pharmaceutical, health care and personal products to address key societal challenges. Novel drug leads are tested and developed using pre-clinical assays before clinical testing and translation into medical care or as potential and innovative cosmetics.

Main areas of research

The use of established pre-clinical human cell and tissue culture models, complemented with in vivo studies using a collection of well characterized human samples, for the study ofnovel intervening molecules and molecular mechanisms involved in highly prevalent diseases

Searching for novel disease biomarkers in circulation using collected human biological samples and correlation with clinical information.

Studies on the potential of circulating extracellular vesicles as novel biomarkers and drug delivery systems, with high diagnostic andtherapeutic value for calcification and inflammatory related diseases.
The use of in vitro and ex-vivo cell human modelsas pre-clinical assays for discovery and validationof marine bioactive products as novel diseasemodifying drugs (DMDs) and unveil theirmechanism of action.

Testing bioproducts from marine resources that could become potential and innovative cosmetics.
 

Members
Galeria
Publications
All Publications 
Viegas CSB, Simes DC. New Perspectives for the Nutritional Value of Vitamin K in Human Health. Journal of Nutritional Disorders & Therapy. 2016;6(3). doi:10.4172/2161-050910.4172/2161-0509.1000192.
Viegas CSB, Simes DC. Gla-rich Protein (GRP): A New Player In The Burden Of Vascular Calcification. Journal of Cardiovascular Diseases & Diagnosis. 2016;4(4). doi:10.4172/2329-951710.4172/2329-9517.1000245.
Cavaco S, Viegas CSB, Rafael MS, et al. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci. 2016;73(5):1051-65. doi:10.1007/s00018-015-2033-9.
Viegas CSB, Rafael MS, Enriquez JL, et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 2015;35(2):399-408. doi:10.1161/ATVBAHA.114.304823.
Rafael MS, Cavaco S, Viegas CSB, et al. Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and γ-carboxylation status. Mol Nutr Food Res. 2014;58(8):1636-46. doi:10.1002/mnfr.201300941.
Viegas CSB, Herfs M, Rafael MS, et al. Gla-rich protein is a potential new vitamin K target in cancer: evidences for a direct GRP-mineral interaction. Biomed Res Int. 2014;2014:340216. doi:10.1155/2014/340216.
Viegas CSB, Simes DC, Williamson MK, et al. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications. J Biol Chem. 2013;288(39):27801-11. doi:10.1074/jbc.M113.450213.
Viegas CSB, Conceição N, Fazenda C, Simes DC, M. Cancela L. Expression of Gla-rich protein (GRP) in newly developed cartilage-derived cell cultures from sturgeon ( Acipenser naccarii ). Journal of Applied Ichthyology. 2010;26(2):214 - 218. doi:10.1111/jai.2010.26.issue-210.1111/j.1439-0426.2010.01408.x.
Viegas CSB, Cavaco S, Neves PL, et al. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 2009;175(6):2288-98. doi:10.2353/ajpath.2009.090474.
Roberto VP, Cavaco S, Viegas CSB, et al. Matrix Gla protein in turbot (Scophthalmus maximus): Gene expression analysis and identification of sites of protein accumulation. Aquaculture. 2009;294(3-4):202 - 211. doi:10.1016/j.aquaculture.2009.06.020.
Viegas CSB, Simes DC, Laizé V, Williamson MK, Price PA, M. Cancela L. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem. 2008;283(52):36655-64. doi:10.1074/jbc.M802761200.
Rønnestad I, Gavaia P, Viegas CSB, et al. Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): cloning, tissue expression and comparative aspects. J Exp Biol. 2007;210(Pt 22):3883-96. doi:10.1242/jeb.007898.
Simões B, Conceição N, Viegas CSB, et al. Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int. 2006;79(4):230-44. doi:10.1007/s00223-006-0111-6.
Gavaia P, Simes DC, Ortiz-Delgado JB, et al. Osteocalcin and matrix Gla protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): comparative gene and protein expression during larval development through adulthood. Gene Expr Patterns. 2006;6(6):637-52. doi:10.1016/j.modgep.2005.11.010.
Ortiz-Delgado JB, Simes DC, Viegas CSB, Schaff BJ, Sarasquete C, M. Cancela L. Cloning of matrix Gla protein in a marine cartilaginous fish, Prionace glauca: preferential protein accumulation in skeletal and vascular systems. Histochem Cell Biol. 2006;126(1):89-101. doi:10.1007/s00418-005-0125-6.
Laizé V, Viegas CSB, Price PA, M. Cancela L. Identification of an osteocalcin isoform in fish with a large acidic prodomain. Journal of Biological Chemistry. 2006;281(22):15037-15043. doi:10.1074/jbc.M600373200.
Pinto JP, Conceição NM, Viegas CSB, et al. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res. 2005;20(8):1440-53. doi:10.1359/JBMR.050318.
Pinto JP, Conceição NM, Viegas CSB, et al. Identification of a New pebp2αA2 Isoform From Zebrafish runx2 Capable of Inducing Osteocalcin Gene Expression In Vitro. Journal of Bone and Mineral Research. 2005;20(8):1440 - 1453. doi:10.1359/JBMR.050318.
Laizé V, Martel P, Viegas CSB, Price PA, M. Cancela L. Evolution of matrix and bone  gamma-carboxyglutamic acid proteins in vertebrates. Journal of Biological Chemistry. 2005;280(29):26659-26668. doi:10.1074/jbc.M500257200.
Laizé V, Martel P, Viegas CSB, Price PA, M. Cancela L. Evolution of matrix and bone gamma-carboxyglutamic acid proteins in vertebrates. J Biol Chem. 2005;280(29):26659-68. doi:10.1074/jbc.M500257200.
Simes DC, Williamson MK, Ortiz-Delgado JB, Viegas CSB, Price PA, M. Cancela L. Purification of matrix Gla protein from a marine teleost fish, Argyrosomus regius: calcified cartilage and not bone as the primary site of MGP accumulation in fish. J Bone Miner Res. 2003;18(2):244-59. doi:10.1359/jbmr.2003.18.2.244.
Araújo NCP, Barroca PMM, Bickley JF, et al. Structural effects on sigmatropic shifts in heteroaromatic allyl ethersElectronic supplementary information (ESI) available: selected crystal data for compound 7. See http://www.rsc.org/suppdata/p1/b1/b102674g/. Journal of the Chemical Society, Perkin Transactions 1. 2002;(9):1213 - 1219. doi:10.1039/b102674g.
Viegas CSB, Pinto JP, Conceição N, Simes DC, M. Cancela L. Cloning and characterization of the cDNA and gene encoding Xenopus laevis osteocalcin. Gene. 2002;289(1-2):97-107.
M. Cancela L, Ohresser MC, Reia JP, Viegas CSB, Williamson MK, Price PA. Matrix Gla protein in Xenopus laevis: molecular cloning, tissue distribution, and evolutionary considerations. J Bone Miner Res. 2001;16(9):1611-21. doi:10.1359/jbmr.2001.16.9.1611.
Gavaia P, Viegas CSB, Pinto JP, Sarasquete MC, M. Cancela L. DETECTION AND LOCALIZATION OF OSTEOCALCIN (BGP OR BONE GLA PROTEIN) IN TELEOSTS BY IN SITU HYBRIDATION AND IMMUNOHISTOCHEMISTRY. Bone. 2001;28:S101 - S248. doi:10.1016/S8756-3282(01)00454-9.
Projects
Activities
Activity type 
Seminário
Carla Viegas will join us on 28 th of June to talk about "Unveiling the dual role of Gla-rich protein (GRP) in the crosstalk between inflammation and calcification in pathological processes". Don't...
Qua, 28/06/2017
at 
Anf. B (CP) - Gambelas Campus UAlg