European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. | - CCMAR -

Journal Article

TitleEuropean sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation.
Publication TypeJournal Article
AuthorsTine, M, Kuhl, H, Gagnaire, P-A, Louro, B, Desmarais, E, Martins, RST, Hecht, J, Knaust, F, Belkhir, K, Klages, S, Dieterich, R, Stueber, K, Piferrer, F, Guinand, B, Bierne, N, Volckaert, FAM, Bargelloni, L, Power, DM, Bonhomme, F, Canario, AVM, Reinhardt, R
Year of Publication2014
JournalNat Commun
Date Published2014 Dec 23
KeywordsAdaptation, Physiological, Animals, Atlantic Ocean, Bass, Chromosome Mapping, Genetic Speciation, Genetic Variation, Genome, Molecular Sequence Data, Phylogeny

The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.


Alternate JournalNat Commun
PubMed ID25534655
PubMed Central IDPMC4284805