Publicações | Page 7 | - CCMAR -
Found 282 results
Filtros: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Segovia-Viadero M, Serrão EA, Canteras-Jordana JC, Gonzalez-Wangüemert M. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?. Heredity. 2016;116(4):378 - 383. doi:10.1038/hdy.2015.109
Segovia-Viadero M, Serrão EA, Canteras-Jordana JC, Gonzalez-Wangüemert M. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?. Heredity (Edinb). 2016;116(4):378-83. doi:10.1038/hdy.2015.109
Secrieru A, O’Neill PMichael, Cristiano MLurdes San. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules. 2020;25(1):42. doi:10.3390/molecules25010042
Secrieru A, Costa ICC, O'Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis—A Short Bridge between Two Distant Illnesses. Molecules. 2020;25(7):1574. doi:10.3390/molecules25071574
Scott AP, Canario AVM. 17 alpha,20 beta-dihydroxy-4-pregnen-3-one 20-sulphate: a major new metabolite of the teleost oocyte maturation-inducing steroid. Gen Comp Endocrinol. 1992;85(1):91-100.
Scott AP, Canario AVM. Plasma levels of ovarian steroids, including 17 alpha,21-dihydroxy-4-pregnene-3,20-dione and 3 alpha,17 alpha,21-trihydroxy-5 beta-pregnan-20-one, in female plaice (Pleuronectes platessa) induced to mature with human chorionic gonadotrophin. Gen Comp Endocrinol. 1990;78(2):286-98.
Scott AP, Canario AVM, Prat F. Radioimmunoassay of ovarian steroids in plasmas of ovulating female sea bass (Dicentrarchus labrax). Gen Comp Endocrinol. 1990;78(2):299-302.
Schulze PSC, Carvalho CFM, Pereira H, et al. Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta). Bioresource Technology. 2017;223:175 - 183. doi:10.1016/j.biortech.2016.10.027
Schulze PSC, Brindley C, Fernández JM, et al. Flashing light does not improve photosynthetic performance and growth of green microalgae. Bioresource Technology Reports. 2020;9:100367. doi:10.1016/j.biteb.2019.100367
Schulze PSC, Barreira L, Pereira H, Perales JA, Varela J. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014;32(8):422-30. doi:10.1016/j.tibtech.2014.06.001
Schulze PSC, Guerra R, Pereira H, Schüler LM, Varela JCS. Flashing LEDs for Microalgal Production. Trends in Biotechnology. 2017;35(11):1088 - 1101. doi:10.1016/j.tibtech.2017.07.011
Schüler L, de Morais EGreque, Trovão M, et al. Isolation and Characterization of Novel Chlorella Vulgaris Mutants With Low Chlorophyll and Improved Protein Contents for Food Applications. Frontiers in Bioengineering and Biotechnology. 2020;8. doi:10.3389/fbioe.2020.00469
Schüler LM, Schulze PSC, Pereira H, Barreira L, León R, Varela J. Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. Algal Research. 2017;25:263 - 273. doi:10.1016/j.algal.2017.05.025
Schüler LM, Santos T, Pereira H, et al. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research. 2020;45:101732. doi:10.1016/j.algal.2019.101732
Schüler LM, Gangadhar KN, Duarte P, et al. Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta). Bioprocess and Biosystems Engineering. 2020;43(5):785 - 796. doi:10.1007/s00449-019-02273-9
Schubert N, Schoenrock KM, Aguirre J, et al. Editorial: Coralline Algae: Globally Distributed Ecosystem Engineers. Frontiers in Marine Science. 2020;7. doi:10.3389/fmars.2020.00352
Schubert N, Demes K. Phenotypic plasticity in the marine angiosperm Halophila decipiens (Hydrocharitaceae, Streptophyta). Marine Ecology Progress Series. 2017;575:81 - 93. doi:10.3354/meps12222
Schubert N, Alvarez-Filip L, Hofmann LC. Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production. Climate Change Ecology. 2022;4:100059. doi:10.1016/j.ecochg.2022.100059
Schubert N, García‐Mendoza E, Pacheco‐Ruiz I. CAROTENOID COMPOSITION OF MARINE RED ALGAE 1. Journal of Phycology. 2006;42(6):1208 - 1216. doi:10.1111/jpy.2006.42.issue-610.1111/j.1529-8817.2006.00274.x
Schubert N, Freitas C, Silva A, et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-33259-4
Schubert N, Hofmann LC, Saá ACAlmeida, et al. Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification. Scientific Reports. 2021;11(1). doi:10.1038/s41598-021-90632-6
Schubert N, García-Mendoza E. PHOTOINHIBITION IN RED ALGAL SPECIES WITH DIFFERENT CAROTENOID PROFILES 1. Journal of Phycology. 2008;44(6):1437 - 1446. doi:10.1111/jpy.2008.44.issue-610.1111/j.1529-8817.2008.00590.x
Schubert N, Salazar VW, Rich WA, et al. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients. Science of The Total Environment. 2019;676:455 - 468. doi:10.1016/j.scitotenv.2019.04.280
Schubert N, Santos R, Silva J. Living in a Fluctuating Environment Increases Tolerance to Marine Heatwaves in the Free-Living Coralline Alga Phymatolithon lusitanicum. Frontiers in Marine Science. 2021;8. doi:10.3389/fmars.2021.791422
Schubert N, García-Mendoza E, Enríquez S. Is the photo-acclimatory response of Rhodophyta conditioned by the species carotenoid profile?. Limnology and Oceanography. 2011;56(6):2347 - 2361. doi:10.4319/lo.2011.56.6.2347