Publicações | - CCMAR -
Found 29 results
Filtros: Autor is Aureliano, Manuel  [Clear All Filters]
2020
Pimpão C, da Silva IV, Mósca AF, et al. The Aquaporin-3-Inhibiting Potential of Polyoxotungstates. International Journal of Molecular Sciences. 2020;21(7):2467. doi:10.3390/ijms21072467
Fonseca C, Fraqueza G, Carabineiro SAC, Aureliano M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. Inorganics. 2020;8(9):49. doi:10.3390/inorganics8090049
2019
Fraqueza G, Fuentes J, Krivosudský L, et al. Inhibition of Na+/K+- and Ca2+-ATPase activities by phosphotetradecavanadate. Journal of Inorganic Biochemistry. 2019;197:110700. doi:10.1016/j.jinorgbio.2019.110700
Marques-da-Silva D, Fraqueza G, Lagoa R, Vannathan AAnandan, Mal SSankar, Aureliano M. Polyoxovanadate inhibition of Escherichia coli growth shows a reverse correlation with Ca 2+ -ATPase inhibition. New Journal of Chemistry. 2019;43(45):17577 - 17587. doi:10.1039/C9NJ01208G
2018
Bijelic A, Aureliano M, Rompel A. The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives. Chemical Communications. 2018;54(10):1153 - 1169. doi:10.1039/C7CC07549A
Gumerova N, Krivosudský L, Fraqueza G, et al. The P-type ATPase inhibiting potential of polyoxotungstates. Metallomics. 2018;10(2):287 - 295. doi:10.1039/C7MT00279C
2017
M. Marques PM, Gianolio D, Ramos S, de Carvalho LAEBati, Aureliano M. An EXAFS Approach to the Study of Polyoxometalate–Protein Interactions: The Case of Decavanadate–ActinAn EXAFS Approach to the Study of PolyoxometalateProtein Interactions: The Case of DecavanadateActin. Inorganic Chemistry. 2017;56(18):10893 - 10903. doi:10.1021/acs.inorgchem.7b0101810.1021/acs.inorgchem.7b01018.s001
2013
Pereira MJ, Palming J, Rizell M, et al. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue. Mol Cell Endocrinol. 2013;365(2):260-9. doi:10.1016/j.mce.2012.10.030
Aureliano M, Fraqueza G, C Ohlin A. Ion pumps as biological targets for decavanadate. Dalton Trans. 2013;42(33):11770-7. doi:10.1039/c3dt50462j
2012
Fraqueza G, de Carvalho LAEBatist, M Marques PM, et al. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans. 2012;41(41):12749-58. doi:10.1039/c2dt31688a
Pereira MJ, Palming J, Rizell M, et al. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol. 2012;355(1):96-105. doi:10.1016/j.mce.2012.01.024
Fraqueza G, C Ohlin A, Casey WH, Aureliano M. Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem. 2012;107(1):82-9. doi:10.1016/j.jinorgbio.2011.10.010
2011
Tiago T, Marques-da-Silva D, Samhan-Arias AK, Aureliano M, Gutiérrez-Merino C. Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration. Cell Calcium. 2011;49(3):174-83. doi:10.1016/j.ceca.2011.01.009
Matos E, Silva TS, Tiago T, Aureliano M, Dinis MTeresa, Dias J. Effect of harvesting stress and storage conditions on protein degradation in fillets of farmed gilthead seabream (Sparus aurata): A differential scanning calorimetry study. Food Chemistry. 2011;126(1):270 - 276. doi:10.1016/j.foodchem.2010.11.017
Ramos S, Almeida RM, Moura JJG, Aureliano M. Implications of oxidovanadium(IV) binding to actin. J Inorg Biochem. 2011;105(6):777-83. doi:10.1016/j.jinorgbio.2011.02.010
2010
Ramos S, Moura JJG, Aureliano M. Actin as a potential target for decavanadate. J Inorg Biochem. 2010;104(12):1234-9. doi:10.1016/j.jinorgbio.2010.08.001
Tiago T, Palma PS, Gutiérrez-Merino C, Aureliano M. Peroxynitrite-mediated oxidative modifications of myosin and implications on structure and function. Free Radic Res. 2010;44(11):1317-27. doi:10.3109/10715762.2010.502170
2009
Ramos S, Duarte RO, Moura JJG, Aureliano M. Decavanadate interactions with actin: cysteine oxidation and vanadyl formation. Dalton Trans. 2009;(38):7985-94. doi:10.1039/b906255f
Aureliano M, Crans DC. Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem. 2009;103(4):536-46. doi:10.1016/j.jinorgbio.2008.11.010
Pereira MJoão, Carvalho E, Eriksson JW, Crans DC, Aureliano M. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. J Inorg Biochem. 2009;103(12):1687-92. doi:10.1016/j.jinorgbio.2009.09.015
Laizé V, Tiago DM, Aureliano M, M. Cancela L. New insights into mineralogenic effects of vanadate. Cell Mol Life Sci. 2009;66(24):3831-6. doi:10.1007/s00018-009-0137-9
2008
Tiago DM, Laizé V, M. Cancela L, Aureliano M. Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line. Cell Biol Toxicol. 2008;24(3):253-63. doi:10.1007/s10565-007-9034-x
Aureliano M, Henao F, Tiago T, et al. Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. Inorg Chem. 2008;47(13):5677-84. doi:10.1021/ic702405d
Soares SSofia, Henao F, Aureliano M, Gutiérrez-Merino C. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. Chem Res Toxicol. 2008;21(3):607-18. doi:10.1021/tx700204r